
MMIX Quick Reference Card
(version 2.0)

Instruction Format
Each MMIX instruction is exactly four bytes long. The first
byte contains the opcode; it selects one out of 256 instruc-
tions. The next three bytes contain either 24 bit immedi-
ate data (e.g. JMP Label); or an 8 bit register number in
the range 0 to 255 followed by 16 bit immediate data (e.g.
SET register,value); or—the most common form—three 8 bit
operands. We will use $X, $Y, and $Z to indicate register
operands; X, Y, and Z to indicate immediate 8 bit data; YZ for
immediate 16 bit data; and XYZ for a 24 bit data value.

Since many instructions come in two forms, one with a regis-
ter $Z and one with an immediate unsigned 8 bit number Z,
we use for brevity $Z to stand for either one of them.

Instructions that operate on unsigned integer quantities are
generally named like the signed counterpart with an U ap-
pended to the instruction name, e.g. ADD and ADDU.

Many instructions specify an absolute memory address using
$Y and $Z. The register $Y serves as 64 bit base address and
$Z as offset. Both values are added to form the absolute
address $Y + $Z. For convenience, a Label can be used in
place of $Y,Z leaving the computation of Z and the selection
of $Y to the assembler. It is neccessary, however, to have a
global register $Y close enough to the target (unless the -x

option of the assembler is used).

Assembler Directives

Is Label IS Expression

Declare Label to be a shorthand for Expression, e.g. one can
write count IS $3 and use count as a synonym for $3.

Location LOC Expression

Continue to assemble instructions or data at the position in
memory given by Expression. Often used Expressions are:
#100 (where programs start) or Data Segment.

Global Register Label GREG Expression

Set aside a new global register containing the value given by
Expression. A commonly used expression is @ (the current
location). Label can be used as a name for this register.

If the initial value is zero, the value is considered dynamic
and can be changed by the program. If the value is not zero,
it is considered a constant that will not change during the
program.

Allocating Data
Byte Data Label BYTE Expressions

Wyde Data Label WYDE Expressions

Tetra Data Label TETRA Expressions

Octa Data Label OCTA Expressions

Bytes, Wydes, Tetras, or Octas are allocated and initialized
by the Expressions at the current location (see LOC); Label

becomes a name for the allocated address.

Loading Data

Load a Byte LDB $X,$Y,$Z

Load a Wyde (2Byte) LDW $X,$Y,$Z

Load a Tetra (4Byte) LDT $X,$Y,$Z

Load an Octa (8Byte) LDO $X,$Y,$Z

The data at $Y + $Z is loaded into register $X. The address
is rounded off to respect alignment restrictions. The value
loaded is considered a signed integer and its sign is extended
as needed.

The load instructions for unsigned quantities (LDBU, LDWU,
LDTU, LDOU) do not perform sign extension.

Storing Data

Store a Byte STB $X,$Y,$Z

Store a Wyde (2Byte) STW $X,$Y,$Z

Store a Tetra (4Byte) STT $X,$Y,$Z

Store a Octa (8Byte) STO $X,$Y,$Z

The least significant 1, 2, 4, or 8 byte from register $X are
stored to Address $Y + $Z. If the target address is not prop-
erly aligned, it is rounded off to the next valid address.

These operations can cause an overflow, while unsigned store
operations never cause overflow.

Setting Registers

Get GET $X,Z

Put PUT X,$Z

Set SET $X,$Z

GET moves the value of special register number Z to register
$X and PUT moves the value of register $Z to special register X.
Using predefined constants rA, rB, ... for the different register
numbers, you can write e.g. GET $1,rR. SET will transfer
the value of register $Z, or of the immediate 16 bit constant
YZ, to register $X.

Load Address LDA $X,Label

LDA computes an absolute address like a load or store instruc-
tion and puts it in register $X. It is assembled as ADDU.

Get Address GETA $X,Label

GETA computes a relative address (similar to a Branch instruc-
tion) and moves the result into register $X.

Integer Arithmetic

Add ADD $X,$Y,$Z

Subtract SUB $X,$Y,$Z

Multiply MUL $X,$Y,$Z

Divide DIV $X,$Y,$Z

$Y operation $Z is computed on integers, where the opera-

tion is either addition, subtraction, multiplication, or divi-
sion. The result is stored in register $X. An immediate value
Z is always taken as an unsigned value.

Arithmetic exceptions are reflected in register rA. Arithmetic
on unsigned integers never causes exceptions.

The remainder of the DIV operation is stored in register rR.
rH. DIVU performs a 128 bit division prepending register rD

to $X.

The high 64 bit of the MULU operation is stored in register rH.

Negate NEG $X,$Z

NEG computes the 2-complement of $Z.

Compare CMP $X,$Y,$Z

CMP will set register $X to -1, 0, or 1 depending on whether
$Y is less than, equal to, or greater than $Z.

Bitwise Operations

And AND $X,$Y,$Z

AND computes the bitwise And of $Y and $Z; the result is
stored into register $X. Similarly, the operations OR, XOR, NOR,
NAND, ANDN (and not), ORN (or not) and NXOR (not xor) are
provided. The bitwise complement can be computed using
e.g. the NOR instruction with immediate operand 0.

Shift Left SL $X,$Y,$Z

Shift Right SR $X,$Y,$Z

All bits of register $Y are shifted left or right by $Z bits; the
result is stored into register $X. If bits (other than the sign
bits) are lost in a SL operation an arithmetic exception is
raised. The signed shift right operation will extend the sign
of the operand. The unsigned instructions raise no exceptions
and perform no sign extension.

Floating Point Arithmetic

Add FADD $X,$Y,$Z

Subtract FSUB $X,$Y,$Z

Multiply FMUL $X,$Y,$Z

Divide FDIV $X,$Y,$Z

Remainder FREM $X,$Y,$Z

Square Root FSQRT $X,$Z

Round to integer FINT $X,$Z

These operations perform IEEE/ANSI Standard 754 floating
point operations on $Y and $Z and store the result in $X.

Float from integer FLOT $X,$Z

Fixed integer from float FIX $X,$Z

FLOT converts the signed integer $Z to a float in $X and FIX

converts a float in $Z to a signed integer in $X. Both opera-
tions are available as unsigned variants.

The instructions above that have only a single operand $Z

optionally can use the value of Y to specify a rounding mode.

Compare FCMP $X,$Y,$Z

Compare using rE FCMPE $X,$Y,$Z

Equal FEQL $X,$Y,$Z

Equal using rE FEQLE $X,$Y,$Z

FCMP is similar to CMP setting $X to -1, 0, or +1 depending on
whether $Y is less than, equal to, or greater than $Z.

FEQL checks if $Y and $Z are equal and sets $X to 1 in this
case, otherwise $X becomes zero.

The same instructions with the suffix E use the epsilon register
rE to specify the size of an Interval around $Y and $Z. Then
the two intervalls are compared.

Store Short Float STSF $X,$Y,$Z

Load Short Float LDSF $X,$Y,$Z

Short Float from integer SFLOT $X,$Z

For improved memory efficiency, loading and storing of 32
bit floating point numbers, called Short Floats, is supported.
STSF rounds the 64 bit float in $X to a 32 bit float and stores
this number at $Y + $Z; LDSF reverses this operation. SFLOT

is similar to FLOT, but includes rounding to a 32 bit float
before placing the result in $X as a 64 bit float.

Jumps and Branches

Jump relative JMP Label

JMP jumps unconditionally to the instruction at position La-

bel . The Label is a three byte relative address, usually com-
puted by the assembler. Different Opcodes exist for jumping
forward and backward, so the full 24 Bits are available to
specify the number of instructions to jump in either direc-
tion. For even bigger jumps, the GO instruction can be used
(see “Linking Subroutines”).

Branch if Zero BZ $X,Label

BZ tests the value of register $X and, if zero, causes the pro-
gram to branch to the location given by Label , a 16 bit relative
address, otherwise the program will continue with the next
instruction.

Further branch instructions are BP (positive), BN (negative),
BEV (even), BOD (odd), BNN (non negative), BNP (non positive),
and BNZ (non zero). The “branch if negative/positive” test
the leftmost bit of $X which indicates the sign of $X. The
“branch if odd/even” test the rightmost bit of $X.

As an optimization, a P can be prefixed to the instruction,
as a hint that the branch will probably be taken; otherwise
branch prediction will assume that the branch is not taken.

Subroutines

Push and Jump PUSHJ $X,Label

Pop and return POP X,YZ

PUSHJ transfers control to the adress specified by Label , a 16
bit relative address, similar to a JMP instruction.

The address of the instruction following the PUSHJ is placed
in register rJ which is used by the POP instruction to return
to address rJ + 4*YZ (YZ is typically 0).

For managing local variables, passing parameters, and return-
ing values, PUSHJ and POP implement a register stack.

The X value of the PUSHJ instruction specifies the size of the
callers stack frame. Registers $0 to $(X-1) are considered
the callers local variables, which become inaccessible during
subroutine execution and are fully restored after return. The

registers $(X+1), $(X+2) . . . are meant to contain the subrou-
tine parameters. PUSHJ will renumber these registers so that
the subroutine will find them allways in registers $0, $1, . . .

The X value of the POP X,YZ instruction specifies the num-
ber of return values stored in $0 to $(X-1). To restore the
callers stackframe, POP will undo the renumbering of regis-
ters. Hence, registers $0, $1, . . . become $(X+1), $(X+2), . . .

again. To improve register usage for the common case of a
single return value, POP moves the “main result” in register
$(X-1) down the register stack so that the caller finds it in
register $X (as specified by PUSHJ $X,YZ).

POP will trim the register stack: it makes all local registers
marginal except those in the callers stack frame and those
that contain return values.

Global registers are not affected by the renumbering.

If the PUSHJ instruction specifies a global register $X, only
local registers will be renumbered, not the marginal registers.
In this case, passing of parameters and return values should
be done in global registers.

Push and Go PUSHGO $X,$Y,$Z

Go GO $X,$Y,$Z

PUSHGO is similar to PUSHJ but computes $Y + $Z as an abso-
lute target address. It can be used to accomplish subroutine
calls where a 16 bit relative address is not sufficient. GO jumps
to the absolute address $Y + $Z as well, but otherwise is more
like a JMP (no register renumbering), except that the address
of the instruction immediately following the GO is stored in
$X. The value in $X can then be used as a return address. The
return to $X can be accomplished with the GO instruction as
well. The symmetry between call and return lends itself to
the implementation of coroutines.

Calling the Operating System

Halt the Program TRAP 0,Halt,0

Calls to the operating system are accomplished with the TRAP

instruction. Register $255 is used to pass parameters and re-
turn values. If more parameters are needed, the arguments
must be placed in consecutive OCTA’s in memory, the parame-
ter block, and $255 must contain the address of the first OCTA.
The Y value is commonly used to specify the operation and Z

is used as an auxiliary parameter.

If XYZ is zero (Halt, used above, is defined to be zero) the
program terminates with exit code $255.

If XYZ is one, a default handler for TRIP interrupts is invoked.
The effect for other values of XYZ depend on the operating
system. MMIXWare specifies routines for a few such values.

Here are some examples:

Output a string TRAP 0,Fputs,StdOut

Before using this instruction, the temporary global register
$255 must be set to the address of a null terminated string.
For example:

Greeting BYTE "Hello World!",0

LDA $255,Greeting

TRAP 0,Fputs,StdOut

After the TRAP instruction, register $255 contains the number
of characters send to the output; it is negative if and only if
an error occurred.

Input a string TRAP 0,Fgets,StdIn

Before using this instruction, the temporary global register
$255 must be set to the address where the buffer address
(not the buffer itself) and the size of the buffer is stored. The
instruction will read one line of input, but not more characters
than the given size of the buffer. For example:

InSize IS 100

InBuffer BYTE 0

LOC InBuffer+InSize

InArgs OCTA InBuffer,InSize

LDA $255,InArgs

TRAP 0,Fgets,StdIn

Further system calls defined by MMIXware are:

File open Fopen(handle,name,mode)

File close Fclose(handle)

File read Fread(handle,buffer,size)

File write Fwrite(handle,buffer,size)

Where mode is a predefined constant (TextRead, TextWrite,
BinaryRead, BinaryWrite, and BinaryReadWrite).

Name Spaces

Set Prefix PREFIX Name

mmixal has two kind of names. Fully qualified names start
with a colon, like “:here”, all other names are automatically
extended by adding the current prefix to it. When the assem-
bler starts, the current prefix is “:”. It can be set to a new
value by the PREFIX Name directive. Note that the old cur-
rent prefix is used to extend Name, if it is not fully qualified,
before it replaces the old current prefix.

The following example defines the fully qualified names:

:count, :sub:return, :sub:routine:count, and :Main.

Note that e.g. the predefined name rJ (Jump register) needs
to be written as :rJ unless the current prefix is “:”.

count IS $1

PREFIX sub:

return IS :rJ

PREFIX routine:

count IS $3

PREFIX :

Main PUT rJ,0

Copyright c© 2012 Martin Ruckert

v2.0 for MMIX, August 2012

Permission is granted to make and distribute copies of this card pro-

vided the copyright notice and this permission notice are preserved on

all copies.

