A GDB Server for the Win32 API

Martin Ruckert
Munich University of Applied Sciences
Department of Mathematics and Computer Science

Version 1.08 DRAFT

1. Table of Contents

1
2
3

O © 0o~

Table of Contents
Introduction
The gdb Remote Protocol
3.1 Read Registers ...
3.2 Write Registers
3.3 Write Single Register
3.4 Read Single Register
3.5 Read Memory . ..o
3.6 Write Memory
3.7 Continue Execution
3.8 Single Step Execution
3.9 Query Last Signal
310 Kill Process ...
3.11 Enable extended Mode e
3.12 Detach from Remote System
3.13 Other Commands it
The Win32 Target Architecture e
4.1 Waiting for an Event
4.2 Starting the Target Thread i e
4.3 Terminating the Target Thread i
4.4 Reading Target Memoryt
4.5 Writing Target Memoryo
4.6 Reading and Writing Target Registers i ..
4.7 Register access fUNCLIONSo\ttt e e e
4.8 Resuming a Thread e
Sending and Receiving Packets
5.1 Predefined ANSWETSttt
5.2 Hexadecimal Numbers
Setting up a TCP/IP Connectionuuuuuuteee e,
Error Reporting and Messages
Index .o
Crossreference of Identifiers
Crossreference of Code

O © © © 00~ O OO U i W W =

O W RN DD DN DN DD = = = = e e e e
= O 0 WN OO 00O Ut OO o

2 2. Introduction

2. Introduction

The gdbserver is a program to interface gdb with a running program, possibly on a different host, over a
standard interface. Since different hosts provide different low level facilities the program is split into two
parts, the host specific part and the gdb specific part. Since this gdbserver is intended to be run under the
Windows operating system, the gdb specific part is subdivided again into an operating system independent
part and a Windows specific part.

From the outset, the gdbserver program is just a big C program and it consists of

(include files 26) (1)
(function prototypes 7)
(global variables 13)

and

(functions 30) 2)
Last not least, we have the main program

int main(int argce, char xargv[]){ (3)
where we

define local variables 9) (4)
set an error exit point 143)

initialize variables 14)

start the target program 64)

open a connection to gdb 133)

set an error reentry point 142)

(receive and dispatch messages 8)

(
(
(
(
(
(

and finally

(close the connection to gdb 135); (5)
We conclude the main program with a successful

return 0; } (6)
The most interesting part of it all is how we (receive and dispatch messages 8). That is, how commands
and answers are exchanged between gdb and gdbserver. This, we will investigate in the next section. Then
follows a discussion about the Win32 API and how it is used to implement the access functions for the
running target program. At the end, we describe how messages are properly packaged, and all the necessary
details on how to establish a TCP/IP connection with gdb, and send the packaged data. We conclude this
paper with a section on messages and error reporting, and provide several indices on content as well as on
programming details.

3. The gdb Remote Protocol 3
3. The gdb Remote Protocol

Messages are transmitted in packets. Two functions handle the low level details:

(function prototypes 7) = (7)
int getpkt (char xbuffer);
int putpkt (char xbuffer); Used in 1.

both functions return the number of characters successfully transmitted or a negative value in case of error.
Using these functions, we can formulate a loop to
(receive and dispatch messages 8) = (8)
target_wait();
while (getpkt (buffer) > 0) {
(dispatch a message 10)

putpkt (buffer);
(check for end of target process 32)
} Used in 4.
The buffer that we use for exchanging messages, as well as its size, is a local variable
(define local variables 9) = (9)
char xbuffer;
unsigned int buffer_size; Used in 4.

To allocate the message buffer, we should know how big a buffer is needed to cover all cases. This is hardly
possible. In any case, we can make it large, lets say 1028 characters, and big enough to hold all registers
(see the G and g command below).

After these preparations we can discuss the messages in Detail. Most command messages are identified
by their first character and we use a switch accordingly.

(dispatch a message 10) = (10)

switch (buffer[0]) { Used in 8.
This will pick one of the following cases. Any gdb server is required to support the g, G, m, M, ¢, and s
commands all other commands are optional.

3.1. Read Registers

The command g, requests the transmission of all the registers. The command consists just of a single ’g’.
The program that is currently being debugged, logically consists of several processes, and each process may
have several threads. The distinction here is, that each thread maintains its own execution state, including a
set of registers, but all threads of one process share the same memory. Hence, we have to select the desired
thread first, then we answer the registers. This implementation of gdbserver is restricted to debugging a
single thread, and therefore we skip this step.

(dispatch a message 10) += (11)
case ’g’: (answer registers 12)
break;

The answer consists of a lengthy string of hexadecimal digits, where each byte of register data is coded by two
digits. The registers, the size of the registers, and the byte order (big endian or little endian) is determined
by the target architecture. gdb itself has two internal macros, REGISTER_RAW_SIZE and REGISTER_NAME that
contain the required information.

(answer registers 12) = (12)
{
int n;
char xp = buffer;
for (n =0; n < target_registers; n++) {
hexfrombin (p, target_register_value (n), target_register_size (n));
p = p+ 2 target_register_size(n);

4 3.1. Read Registers

¥
#p = 0;
} Used in 11.
We used three target dependent entities:
e target_registers, the number of registers available,
e target_register_size, a function that returns the size of the register in byte, and
e target_register_value, a function returning a pointer to a place in memory, from where the register value
can be read in target byte order.
It is crucial that our buffer is large enough. For this we have a

(global variables 13) = (13)
static unsigned int registerpkg_size; Used in 1.

Which is set when we

(initialize variables 14) = (14)

{

int n;
registerpkg-size = 0;
for (n = 0; n < target_registers; n++) registerpkg_size = registerpkg_size + 2 x target_register_size(n);

} Used in 4.
After that, we can finally allocate the message buffer.
(initialize variables 14) += (15)
if (registerpkg-size < 1024) buffer_size = 1024;
else buffer_size = registerpkg_size + 1; /* for the trailing zero byte x/

buffer = malloc(buffer_size);
if (buffer = NULL) fatal_error("0Out_of memory");

3.2. Write Registers
indexwrite registers The command G, requests the setting of all the registers. Again we select the thread,
before we extract the registers from the buffer, and conclude with providing an answer to gdb.

(dispatch a message 10) += (16)
case ’G’: (obtain registers 17)answer_ok (buffer);
break;

The command encodes after the leading letter G’ all the registers exactly in the same format as in the ’g’
command discussed before. Hence, we have:

(obtain registers 17) = (17)

int 4
char xp = buffer;
for (i = 0; i < target_registers; i++) {
binfromhex (target_register_address (i), target_register_size (i), p);
p = p+ 2 target_register_size (i);
}
if (strlen(buffer) # registerpkg_size) message("register package has_ wrong length");

} Used in 16.
The function target_register_address is similar to target_register_value. Both deliver an address in memory
that is associated with the given register. Where as target_register_value assumes that your are going to read
the memory at that address, the function target_register_address assumes you are writing this address.

3.3. Write Single Register 5

3.3. Write Single Register
The command P, is used by gdb to set a single register. The usual answer is ’OK’.
(dispatch a message 10) += (18)
case ’P’:
{
int n;
(obtain register number n 19)
(obtain one register value 20)
}
answer-ok (buffer);
break;

In this command, the 'P’ is followed by the hex encoded register number n,

(obtain register number n 19) = (19)
n = intfromhex (buffer + 1);
if (n > target_registers) {
message ("wrong register number");
answer_error (buffer, 1);
break;
} Used in 18 and 21.

After the register number follows an equal sign followed by the hex encoded value of the register (in target
byte order).

(obtain one register value 20) = (20)
binfromhex (target_register_address (n), target_register_size (n), strchr (buffer + 1, =) + 1); Used in 18.

3.4. Read Single Register
The command p, is used by gdb to obtain a single Register. The format of the 'p’ command is as one should
expect from the previous commands: The letter 'p’ is followed by the register number, and the answer is the
register value hex encoded in target byte order.
(dispatch a message 10) += (21)
case ’p’:
{

int n;

(obtain register number n 19)

(answer register n 22)

¥
break;

To answer, we just pack the register value into the buffer and terminate with a zero byte.

(answer register n 22) = (22)
hexfrombin (buffer, target_register_value (n), target_register_size (n));
buffer [target_register_size(n) * 2] = 0; Used in 21.

3.5. Read Memory
The command m, is used by gdb to inspect memory locations. It provides an address a and the number n of
bytes desired. Then we allocate space for a copy of the requested target memory. A target specific function
target_get_memory, will then actually read the memory and return the number of bytes read. From this byte
string, we construct an answer.
(dispatch a message 10) += (23)
case 'm’:

{

unsigned int a;

6 3.5. Read Memory

unsigned int /;
unsigned char xm;

(get address a and length [24)
m = malloc(l);
if (m = NULL)
error ("out_of memory") ;

l = target_get_memory (m, a,l);
(answer memory string 25)
free(m);

}

break;

In the 'm’ command, the letter 'm’ is followed by the address coded in hex, then a comma, and then the
number of bytes needed. We trim the number of bytes requested down to a size that our buffer can handle.
This is ok, since this command may return fewer bytes than requested anyway.
(get address a and length [24) = (24)
a = intfromhez (buffer 4+ 1);
I = intfromhex (strchr (buffer +1,7,°) + 1);
if (I > buffer_size/2) | = (buffer_size /2) — 1; Used in 23 and 27.

The answer is easily obtained the usual way:

(answer memory string 25) = (25)
hexzfrombin (buffer,m,1); Used in 23.

For the function strchr we need

(include files 26) = (26)

#include <string.h> Used in 1.

3.6. Write Memory

The command V, is used by gdb to write into memory. After the command character "M’, the address a and
the length [are encoded in hex, separated by a comma. Then follows a colon. After the colon, the memory
content is coded as usual in hex and target byte order.

(dispatch a message 10) += (27)
case 'M’:
{
unsigned int «;
unsigned int [;
unsigned char xm;

(get address a and length [24)
m = malloc(l);
if (m = NULL)
error ("out,of memory") ;
binfromhex (m, 1, strchr (buffer +1,°:7) 4+ 1);
if (target_put_memory(m,a,l) =1) answer_ok (buffer);
else answer_error (buffer,1);
free(m);
}
break;

3.7. Continue Execution 7

3.7. Continue Execution
The command c, is used by gdb to continue execution of the current thread. The ’c¢’ might be followed by
an optional address, which we read and pass on to a low level function target_continue, the we wait until the
target stops again an report the cause and the circumstances of this stop to the waiting debugger.
(dispatch a message 10) += (28)
case ’c’:

{

unsigned int a;

(get optional address a 29)target_continue();
target-wait ();
answer_stopped (buffer);

}
break;

To test for the presence for an address, we just consider the byte following the ’c’, and the read the hex
coded address.

(get optional address a 29) = (29)
if (buffer[1] #0) a = intfromhex (buffer + 1);
else a = 0; Used in 28 and 35.

The reporting of a stopped thread may take several forms. In the simplest case, we answer an 'S’ followed
by the signal number (coded in hex); in the more elaborate case, we provide some information on certain
registers which we assume the debugger will need anyway, as for instance the program counter, the stack
pointer and the frame pointer. In this case, the answer consists of a "I’ followed by the signal number,
followed by a sequence of register specifications.

While we are at it, two more answers are possible as a response to a stopped thread: It the thread exited
we answer a ‘W’ followed by the exit code; it the thread was killed by a signal, we answer "X’ followed by
the signal number.

(functions 30) = (30)
void answer_stopped (char xbuffer)

{

int status;
int sig;
status = target_status();
sig = target_signal ();
if (status = EXITED) {
buffer[0] = *W’, hexfromint (buffer + 1, sig);

else if (status = KILLED) {
buffer[0] = X’ , hexfromint (buffer + 1, sig);

else {
int [;
buffer[0] = *T?;
I = hexfromint (buffer + 1, sig);
answer_registers (buffer + 14 1);
}

} Used in 2.
We used the function

(function prototypes 7) += (31)
extern void answer_registers(char xbuffer);
extern int hezfromint(char xto,unsigned int from);

8 3.7. Continue Execution

We use the return value of target_status also to

(check for end of target process 32) = (32)

{

int status;

status = target_status();

if (status = EXITED) {
message ("Target process exited");
break;

}

else if (status = KILLED) {

message ("Target process was killed");
break;
}

} Used in 8.
The break here will cause the message processing loop to exit.

Each register specification consists of the register number, a colon, the register value, and a semicolon.
The registers that gdb needs are target dependent. So we use the function target_expedite to give us a pointer
to an array of register numbers, that must end in a negative value. All these values are then packed in the
return packet.

(functions 30) += (33)
void answer_registers(char xbuffer)

{

int xn;

n = target_expedite ();

while (xn > 0) {
int [;
[= hexfromint (buffer, «n);
buffer = buffer + ;
buffer[0] = 2 :7;
buffer ++;
I = hexfrombin (buffer, target_register_value (xn), target_register_size (xn));
buffer = buffer + ;
buffer[0] = ;7
buffer ++;
n++;

}

buffer[0] = 0;

}

We used the function

(function prototypes 7) += (34)
extern int hezfrombin(char xto,char xfrom,int fromsize);

3.8. Single Step Execution
The command s, is used by gdb to continue execution of the current thread by only a single step. Its format,
as well as the reply is analogous to the continue command.
(dispatch a message 10) += (35)
case ’s’:

{

unsigned int a;

(get optional address a 29)

3.8. Single Step Execution 9

target_step ();
target_wait ();
answer_stopped (buffer);

}
break;

3.9. Query Last Signal
The command 7, is used by gdb to inquire about the last signal that was received by the process. The reply
is again the same as for the step or continue command.

(dispatch a message 10) += (36)
case ’7’: answer_stopped (buffer);
break;

3.10. Kill Process
The command k, is used by gdb to kill the current thread. We kill the gdbserver too (not perfect).

(dispatch a message 10) += (37)
case ’k’: target_kill();
exit (0);

3.11. Enable extended Mode
The command !, is used by gdb to switch the gdbserver into extended mode. Which, by now, is not
supported.

(dispatch a message 10) += (38)
case ’!’: answer_nothing (buffer);
break;

3.12. Detach from Remote System
The command D, is send by gdb if it detaches from the server. It is not yet supported. There is no answer
to this command.

(dispatch a message 10) += (39)
case ’D’: answer_nothing (buffer);
break;

3.13. Other Commands
Not yet implemented are the commands: d, C, A, i, q, Q, S, T, X, z, and Z. Some commands probably never
get implemented: b, B, r, and t.

A command that is not implemented will end up in the default section of the switch.
(dispatch a message 10) += (40)
default: answer_nothing (buffer);

break; }

which concludes the description of how we (dispatch a message 10).

10 4. The Win32 Target Architecture
4. The Win32 Target Architecture

The target part of gdbserver must be rewritten for each and every target. Therefore it is of special
importance to keep this part as short as possible and to give an exact specification of all and everything that
must be in this section.

To simplify things, this section produces a header file called “target.h” that will contain declarations of all
functions, variables, types, etc. that are provided by the rest of gdbserver to be used by the target section,
we call this (target imports 60), and all the stuff that is provided by the target section to be used by the
gdbserver, we call this (target exports 44).

(target.h 41) = (41)

(target imports 60)

(target exports 44)

This header file is then included into the gdbserver file

(include files 26) += (42)
#include "target.h"

Second, this section produces the file “target.c” which contains the implementation of all the (target
functions 45). Again, at the very beginning, we include the target header file.
(target.c 43)= (43)
#include <windows.h>
#include "target.h"

(private target types 53)(private target variables 56)

(target functions 45)

The target.c file is compiled separately and linked with the rest to form a complete gdbserver.

As an important simplification, each instance of this gdbserver will handle only one type of target. There
are no provisions to switch to a different target at run time, something the old gdbserver could do in
principle, but rarely does. Further, in this section the implementation of the target functions assumes that
the target program is running on an Intel processor under the windows operating system, and we use the
native win32 API.

After these preliminaries, let us jump to the core function: target_wait, which waits for the running target
program to stop.

(target exports 44) = (44)

extern void target_wait(void); Used in 41.

4.1. Waiting for an Event
To implement this, the Win32 API has the function WaitForDebugFEvent which needs the address of a
DEBUG_EVENT structure and a timeout. We choose INFINITE for the timeout, which does what it says. After
calling this function, we will { process the event 47). We enclose the whole thing in an infinite loop. This
way, the processing can determine whether to return from the function and notify the gdbserver about this
event, or ignore, or otherwise handle the event, stay in the loop, and wait for the next event to occur.
(target functions 45) = (45)
#include <stdio.h>

void target-wait (void)

static DEBUG_EVENT event;
while (1) {
if (= WaitForDebugEvent (& event, INFINITE))
error ("WaitForDebugEvent timed out") ;
forintf (stderr, "Event :,%d,\t Thread, ,Id: %x\n", event.dwDebugEventCode, event.dwThreadld);
(process the event 47)
}

} Used in 43.

4.1. Waiting for an Event 11

After we have waited for the event, the ewvent structure is filled with information about the event. For
instance it contains the dwThreadld identifying the thread that had the event. Under Windows, when a
program is started, it will create all kinds of threads to manage for instance the user interface. Since we are
not interested in these events, we start out processing with checking the dwThreadld against the targets id
which belongs to the

(thread information 46) = (46)
DWORD thread_id; Used in 53.

stored in the structure ¢. If it does not match, we (ignore the event 48).

(process the event 47) = (47)
if (event.dwThreadld # t.thread_id \V event.dwProcessId # t.process_id) {
forintf (stderr, "Event_has wrong,ids\n");
(ignore the event 48)
} Used in 45.

To ignore an event, we use the ContinueDebugEvent function. It needs a Process Id and a Thread Id, both
of which, we can take from the event structure and a parameter to determine the kind of continuation. Since
we are still interested in receiving further events, we use the value DBG_CONTINUE. After the thread has
gained the permission to continue, the target_wait function will continue as well in its processing loop.

(ignore the event 48) = (48)

fprintf (stderr, "Continue %x %x %x\n", event.dwProcessld, event.dwThreadld,DBG_CONTINUE);
ContinueDebugEvent (event.dwProcessld, event.dwThreadld,DBG_CONTINUE);
continue;

} Used in 47, 50, 51, and 63.

The event structure provides a clue of the kind of event that occurred with an dwDebugEventCode. Hence,
we start a switch and consider all the cases separately.

(process the event 47) += (49)
switch (event.dwDebugFEventCode) {

Now to the different cases.
Most of them, we simply ignore.

(process the event 47) += (50)
case UNLOAD_DLL_DEBUG_EVENT: case OUTPUT_DEBUG_STRING_EVENT: (ignore the event 48)

Others need some extra processing, like closing handles, before we finally ignore them.

(process the event 47) += (51)
case CREATE_PROCESS_DEBUG_EVENT: CloseHandle(event.u.CreateProcessInfo.hFile);

CloseHandle (event .u. CreateProcessInfo.hProcess);

CloseHandle (event .u. Create ProcessInfo .hThread);
(ignore the event 48)case LOAD_DLL_DEBUG_EVENT:

CloseHandle (event.u.LoadDIl.hFile); (ignore the event 48)

If the thread we are debugging is exiting, the debugger needs notification. We return.

(process the event 47) += (52)
case EXIT_THREAD_DEBUG_EVENT: (invalidate the cache 77)

t.status = EXITED;

t.signal = event.u.EzitThread .dwEzxitCode; (set resume-mode 92)return;
case EXIT_PROCESS_DEBUG_EVENT: (invalidate the cache 77)

t.status = EXITED;

t.signal = event.u.ExitProcess.dwEzitCode; (set resume_mode 92)return;

But before we do so, we record some information about the process. All information about a thread is stored
in a thread_info structure.

12 4.1. Waiting for an Event

(private target types 53) = (53)
typedef struct thread_info {
(thread information 46)

} thread_info; Used in 43.
Two of the information items, which we used above are the status and the signal
(thread information 46) += (54)
int status;
int signal;

The valid values for the status are
(target exports 44) += (55)
#define RUNNING O
#define EXITED 1
#define KILLED 2
#define STOPPED 3
In signal we store exit codes and signals received. exception is a flag indicating that an EXCEPTION_DEBUG_EVENTH
has occurred (see below). Since in this implementation only a single thread is considered, we use only a
single thread_info variable t.
(private target variables 56) = (56)
static thread.-info t; Used in 43.
All access to the target is done by a functional interface. Hence, for variables like status and signal there
are functions to inspect them.
(target exports 44) 4= (57)
extern int target_signal(void);
extern int target_status(void);

These functions just return the appropriate value.
(target functions 45) += (58)
int target_signal (void)

{

return t.signal;

}

int target_status(void)

{

return t.status;

}

Very similar is the processing, when the tread is created.

(process the event 47) += (59)
case CREATE_THREAD_DEBUG_EVENT: (invalidate the cache 77)

t.status = STOPPED;

t.signal = TARGET_SIGNAL_TRAP; (set resume_mode 92)return;

The value TARGET_SIGNAL_TRAP comes from the file signals.h, which is part of gdb and is included as part
of the

(target imports 60) = (60)

#include "signals.h" Used in 41.
The most common event is the EXCEPTION_DEBUG_EVENT.

(process the event 47) += (61)

case EXCEPTION_DEBUG_EVENT: (invalidate the cache 77)
(convert win32 signal to gdb signal 62)
t.status = STOPPED; (set resume_mode 92)return;

4.1. Waiting for an Event 13

The signal that caused the thread to stop is part of the event structure. gdb, however, has its own Unix
oriented notion of signals and we have to find for each win32 signal the a corresponding gdb signal.

(convert win32 signal to gdb signal 62) = (62)
switch (event.u.Exception. ExceptionRecord . ExceptionCode) {
case EXCEPTION_ACCESS_VIOLATION: t.signal = TARGET_SIGNAL_SEGV;

break;

case STATUS_STACK_OVERFLOW: t.signal = TARGET_SIGNAL_SEGV;
break;

case STATUS_FLOAT_DENORMAL_OPERAND: t.signal = TARGET_SIGNAL_FPE;
break;

case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: t.signal = TARGET_SIGNAL_FPE;
break;

case STATUS_FLOAT_INEXACT_RESULT: t.signal = TARGET_SIGNAL_FPE;
break;

case STATUS_FLOAT_INVALID_OPERATION: t.signal = TARGET_SIGNAL_FPE;
break;

case STATUS_FLOAT_OVERFLOW: t.signal = TARGET_SIGNAL_FPE;
break;

case STATUS_FLOAT_STACK_CHECK: t.signal = TARGET_SIGNAL_FPE;
break;

case STATUS_FLOAT_UNDERFLOW: t.signal = TARGET_SIGNAL_FPE;
break;

case STATUS_FLOAT_DIVIDE_BY_ZERO: t.signal = TARGET_SIGNAL_FPE;
break;

case STATUS_INTEGER_DIVIDE_BY_ZERO: t.signal = TARGET_SIGNAL_FPE;
break;

case STATUS_INTEGER_OVERFLOW: t.signal = TARGET_SIGNAL_FPE;
break;

case EXCEPTION_BREAKPOINT: t.signal = TARGET_SIGNAL_TRAP;
break;

case DBG_CONTROL_C: t.signal = TARGET_SIGNAL_INT;
break;

case DBG_CONTROL_BREAK: t.signal = TARGET_SIGNAL_INT;
break;

case EXCEPTION_SINGLE_STEP: t.signal = TARGET_SIGNAL_TRAP;
break;

case EXCEPTION_ILLEGAL_INSTRUCTION: t.signal = TARGET_SIGNAL_ILL;
break;

case EXCEPTION_PRIV_INSTRUCTION: t.signal = TARGET_SIGNAL_ILL;
break;

case EXCEPTION_NONCONTINUABLE_EXCEPTION: t.signal = TARGET_SIGNAL_ILL;
break;
default: t¢.signal = TARGET_SIGNAL_UNKNOWN;
break;
} Used in 61.

Finally, we conclude the event processing with the default case.

(process the event 47> += (63)
default: (ignore the event 48)}

14 4.2. Starting the Target Thread

4.2. Starting the Target Thread
The function target_start which we use to

(start the target program 64) = (64)
if (arge < 3) fatal_error("Use: \gdbserver\ host:port target,[target arguments]");
target_start(arge — 2, argu + 2); Used in 4.

is part of the

(target exports 44) += (65)
extern int target_start(int arge,char xargv[]);

The function is implemented using the CreateProcess windows system call.

(target functions 45) += (66)
int target_start(int arge,char xargv|])
{
BOOL ret;
DWORD flags;
STARTUPINFOSsi;
PROCESS_INFORMATION pi:

static char commandline[1024];

flags = DEBUG_ONLY_THIS_PROCESS;
flags |= DEBUG_PROCESS;
memset (&si, 0, sizeof (si));

si.cb = sizeof (si);

memset (&pi, 0, sizeof (pi));
(convert argv to commandline 68)

ret = CreateProcess (NULL, /* Application Name x/
commandline, /* command line */
NULL, /* Security */
NULL, /* thread =/
TRUE, /* inherit handles =/
flags, /x start flags =/
NULL, /* the environment x/
NULL, /* current directory x/
&si, &pi);

if (—ret)

error ("Error creating process") ;
t.thread_handle = pi.hThread;
t.process_handle = pi.hProcess;
t.thread_id = pi.dwThreadld;
t.process_id = pi.dwProcessld;
(invalidate the cache 77)return pi.dwProcessld;

}

Notice that we immediately after creating the process, we wait for it to stop again, a behavior, which is
initiated by setting the creation flags to DEBUG_PROCESS.

We have seen already the thread_id, when we considered the processing of events. Here we see how the id
gets initialized. We keep other important information about the process, the handles for process and thread
as part of the
(thread information 46) += (67)

HANDLE thread_handle;

HANDLE process_handle;

DWORD process_id;;

The return value is the win32 process id, that could be used by the calling gdbserver.

4.2. Starting the Target Thread 15

It remains to see how to convert the Unix style argv to the win32 style commandline.

(convert argu to commandline 68) = (68)
{
int 4, j, k;
1= 0;
J=0;

commandline[i] = 0;
while (argv[j] # NULL) {
k = strlen(argv[j]);
i (i 4+ k+1<1024) {
if (i #0) commandlineli++] =,
strepy (commandline + i, argu[j]);
=1+ k;
J+s
}

else error ("Commandline jtoo,long.") ;

}

} Used in 66.

4.3. Terminating the Target Thread

The inverse to starting the target program is terminating it. This is done with the function target_kill.

(target exports 44) += (69)
extern void target_kill(void);

Because handles are valuable resource under win32, we have to close all handles here.

(target functions 45) += (70)
void target_kill (void)

{
TerminateProcess (t.process_handle, 1);
CloseHandle (t.process_handle);
CloseHandle (t.thread_handle);

}

Why we keep the handles in the first place? Because we need them to read or write memory (process handle)
and to read or write registers (thread handle), as we will see in the next sections.

4.4. Reading Target Memory

The function target_get_memory is one of the

(target exports 44) += (71)
extern int target_get_memory(unsigned char xm, unsigned int «,unsigned int [);

The call to target_get_memory(m,a,l) will copy I bytes from address a to the buffer m, and return the

number of bytes read. The implementation uses the Win32 ReadProcessMemory system call.

(target functions 45) += (72)
int target_get_memory(unsigned char #m, unsigned int a,unsigned int /)

{

DWORD count;

if (= ReadProcessMemory(t.process_handle, /* handle to the process whose memory is read */
(LPCVOID)a, /* address to start reading =/

m, /+ address of buffer to place read data =/

l /* number of bytes to read x/

&count /* address of number of bytes read =/

)

16 4.4. Reading Target Memory

error ("Unable to_read process Memory") ;
if (count #1) message("Partly unsuccessful read process Memory");
return count;

}

4.5. Writing Target Memory

The function target_put_memory is again one of the

(target exports 44) 4= (73)
extern unsigned int target_put-memory(unsigned char xm,unsigned int a, unsigned int [);

The function will copy [bytes from buffer m to the address a and returns the number of bytes written. We

use the WriteProcessMemory system call and must not forget to flush the instruction cache. gdb might be

forced to set breakpoints by writing into the code segment of the running process. If however the memory

location in question is already in the instruction cache. The process will not stop unless ...

(target functions 45) += (74)
unsigned int target_put_memory(unsigned char xm,unsigned int a, unsigned int [)

{

DWORD count;

if (= WriteProcessMemory (t.process_handle, /* handle to the process whose memory is read */
(LPVOID)a, /* address to start writing */

(LPVOID)m, /* address of buffer for write data =/

l /* number of bytes to write */

&count /+ address of number of bytes written */

)) message("Unable to write process Memory");

if (count #+ l) message("Part1y._|unsuccessfuluwritel_,processL,Memory");
FlushInstructionCache (t.process_handle, (LPCVOID)a, l);

return count;

}

4.6. Reading and Writing Target Registers

For reading registers, there is a the GetThreadContext call, which will read all registers together into a
CONTEXT structure. Since the gdbserver reads registers individually using the target_register_value function,
it is not a good idea to use GetThreadContext repeatedly. Instead, we maintain the CONTEXT structure as
part of the

(thread information 46) += (75)
CONTEXT context;

together with a flag to indicate that the cached information is valid.

(thread information 46) += (76)
int context_valid;

We can then easily

(invalidate the cache 77) = (77)
t.context_valid = 0; Used in 52, 59, 61, and 66.

We use GetThreadContext to write the function validate_cache

(target functions 45) += (78)
static void validate_cache(void)
{
if (t.context_valid) return;
memset (&(t.context),0, sizeof (CONTEXT));
t.context.ContertFlags = CONTEXT_FULL;
if (- GetThreadContext(t.thread_handle, /* handle to thread with context */
&(t.context) /* address of context structure */

4.6. Reading and Writing Target Registers 17
)

error ("Unable to_fetch registers") ;
else {

t.context_valid = 1;

t.context_changed = 0;

}
}

In the last line, we see a new piece of

(thread information 46) += (79)
int context_changed;

This tells us, whether the context was possibly changed, which makes it necessary to write the context back
to the thread before the thread can continue. This is how we

(set a valid cache 80) = (80)
t.context.ContextFlags = CONTEXT_FULL;
if (=SetThreadContext(t.thread_handle, /* handle to thread with context =/
&(t.context) /+ address of context structure x*/
)
error ("Unable to,store registers") ;
else {
t.context_valid = 1;
t.context_changed = 0;
} Used in 91.

4.7. Register access functions
After these preparations, we can now define the
(target exports 44) += (81)
extern int target_registers;
extern unsigned char xtarget_register_value (int 1);
extern unsigned char xtarget_register_address(int i);
extern int target_register_size(int i);
extern int xtarget_expedite (void);

Again we face the problem of mapping gdb’s idea of a register and its register number into windows idea of
registers as defined by the CONTEXT structure. To do this, we define an array, called context_mapping, that is
ordered according to gdb’s register numbers. That is, we use gdb’s register numbers as index into this array.
The array then gives us two things, the byte offset of the register inside theCONTEXT structure and the size
of it in bytes.
(private target types 53) += (82)
typedef struct {
int offset;
int size;
} mapping;
To simplify the static initialization of the context_mapping variable we use a simple macro that maps the
names of fields of the CONTEXT structure to the offset and the size of the field.

(private target types 53) += (83)

#define map(field){ ((int) & (((CONTEXT *) NULL) — field)) , sizeof ((((CONTEXT %) NULL) —
field)) }

(private target variables 56) += (84)

static mapping context_mapping|] = {map(FEax), /* eax */

map (Ecx), /% ecx x/

map (Edz), /x edx x/

18

map (Ebzx),

map (Esp),

map (Ebp),

map (Esi),

map (Edi),

map (Fip),

map (EFlags),

map (SegCs),

map (SeqSs),

map (SegDs),

map (SegEs),

map (SegF's),

map (SegGs),

map (FloatSave. RegisterArea
map (FloatSave. RegisterArea
map (FloatSave. RegisterArea
map (FloatSave. RegisterArea
map (FloatSave. RegisterArea

(
(
(
(
(
(
(
(
(
(
(
(
(
(0x10
(
(
E
map (FloatSave. Register Area

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

1%10
2x10
3% 10
4 %10
5% 10

9
)

)

)

9

map (FloatSave. RegisterArea[6 * 10
map (FloatSave. RegisterArea[7 x 10
map (FloatSave. ControlWord),
map (FloatSave . Status Word),
map (FloatSave. TagWord),

map (FloatSave . ErrorSelector),
map (FloatSave. ErrorOffset),
map (FloatSave.DataSelector),
map (FloatSave.DataOffset),
map (FloatSave . ErrorSelector),
map (ExtendedRegisters[10 = 16]),

)

)
I
I
])7
)
)
I
)

)

[fop x/
map (EzrtendedRegisters|11 * 16
map (EzrtendedRegisters
map (ExtendedRegisters
map (ExtendedRegisters
map (ErtendedRegisters
map (EzxtendedRegisters
map (EzrtendedRegisters
map (EzrtendedRegisters

b

)

1)
1)
12 % 16]),
13 % 16]),
14 % 16)),
15 x 16])
16 % 16])
17 % 16])

24])

)

)

, /% xmm7*16] */

4.7. Register access functions

/* ebx x/
/* esp x/
/* ebp */
/* esi %/
/x edi x/
/* eip */
/x eflags */
/% cs x/
/x ss x/
/x ds x/
/x es x/
[fs x/
/* g8 */
/% st0 */
/% stl */
[x st2 %/

[* st3 %/

/% std x/

/x st x/

/* st6 x/

/* st x/

/x fetrl */

/* fstat =/

/x ftag x/

/x fiseg */

/x fioff x/

/% foseg x/

/x fooff =/

/x XMMO-7 x/

/* xmm0*16] */
/% xmml1*16] =/
/% xmm2*16] */
/% xmm3*16] */
/* xmm4*16] */
/* xmmb*16] */
/* xmm6*16] */
/+* MXCSR x*/

/* mxcsr */

Given this array the following is pretty easy. The number of target registers can be computed from the size

of the previous array:

(target functions 45) +=
int target_registers = sizeof (context_mapping)/sizeof (mapping);

A pointer to the location where the value of register ¢ can be found as required by the function target_register_valuel

can be obtained by:

(target functions 45) +=
unsigned char xtarget_register_value (int 7)

{

validate_cache ();

return ((unsigned char x) &(t.context)) + context-mapping[i].offset;

}

(85)

(86)

4.7. Register access functions 19

A second function is provided, called target_register_address, which returns the same result as target_register_valuell
but assumes that the pointer value returned is used for writing into the CONTEXT structure. It sets the
context_changed flag accordingly.

(target functions 45) += (87)
unsigned char xtarget_register_address (int 7)

{

unsigned char xp;

p = target_register_value (i);
t.context_changed = 1;
return p;

}

Next, one of the most simple

(target functions 45) += (88)
int target_register_size(int i)

{

return context_mapping|i].size;

}

To conclude this section, we consider a mechanism to send some register values to gdb even before it asks
for it. It is called to expedite registers. These are registers that gdb will need in any case after a program
stops. The function target_expedite will return a pointer to an array of register numbers, that must end in
a negative value. All these values are then packed in the return packet. For the Intel x86 processor the
registers are stack pointer (Esp), base pointer (Ebp), and instruction pointer (Eip), with numbers 4, 5, and
8.

(target functions 45) += (89)
int xtarget_expedite (void)

{

static int expedite[] = {4,5,8, —1};

return ezpedite;

}

4.8. Resuming a Thread
This is the last problem we consider: How to continue a thread after the debugger has inspected it. The two
functions are
(target exports 44) += (90)
extern void target_step(void);
extern void target_continue(void);

Let’s look at target_continue first.

(target functions 45) += (91)
void target_continue(void)

if (t.context_valid A t.context_changed) {(set a valid cache 80)}
fprintf (stderr, "Target Continue %hx %hxu%x\n", t.process_id, t.thread_id , t.resume_mode);
if (= ContinueDebugFEvent (t.process_id, t.thread_id ,t.resume_mode))
error ("Unable to,continue Thread") ;
¥

The resume_mode is normally DBG_CONTINUE

(set resume_mode 92) = (92)
t.resume_mode = DBG_CONTINUE; Used in 52, 59, and 61.

and is stored in the

20 4.8. Resuming a Thread

(thread information 46) += (93)
DWORD resume_mode;

If, however, the thread was stopped by a signal through an EXCEPTION_DEBUG_EVENT and the thread is forced
by a ’S” or 'C’ to receive a certain signal, it can be set to DBG_EXCEPTION_NOT_HANDLED.
Now the function target_step. To achieve the stepping, we have to set a special bit in the Eflags register.
(set stepping flag 94) = (94)
t.context.EFlags |= #100; Used in 95.
But before we do so, we should make sure, that the data in the context cache is valid, and afterwards, we
should remember that the cache has changed.

(target functions 45) += (95)
void target_step(void)

validate_cache();

(set stepping flag 94)
t.context_changed = 1;
target_continue();

}

Another way to modify the behavior of the target is the setting of the continuation point. This can be done

by modifying the instruction pointer. A function to do just that is

(target exports 44) += (96)
extern void target_set_ip (unsigned int a);

The implementation should come as no surprise:

(target functions 45) += (97)
void target_set_ip (unsigned int a)

validate_cache();
t.context.Fip = a;
t.context_changed = 1;

}

5. Sending and Receiving Packets

The commands and answers are nicely wrapped into a packet. Each packet starts with a $ sign and ends
with a # sign followed by a two digit hexadecimal checksum.
Versions of gdb prior to 5.0 did add a sequence id and a colon just before the packet data, which is not
supported by this application.
(functions 30) += (98)
int getpkt (char xbuffer)
{
int length = 0;
unsigned char my_checksum = 0, checksum = 0;
do {
(skip to the dollar sign 99)
(get packet 100)
(get checksum 101)
(confirm receipt 102)
} while (my_checksum # checksum);
buffer[length] = 0;
return length;

5. Sending and Receiving Packets

A loop will
(skip to the dollar sign 99) =

int ch;

while ((ch = readchar()) # ’$”)
if (ch <0) return ch;
}

21

(99)

Used in 98.

and terminates the function in case of read errors. Next, we start reading the packet data, adding all the

bytes received into our own version of the checksum.
(get packet 100) =

{
int ch;
while ((ch = readchar()) # *#°) {
if (¢ch <0) return ch;
my_checksum = my_checksum + ch;
buffer[length++] = ch;
}
}

To get the real checksum, we read two hex digits.

(get checksum 101) =
{

int ch;
ch = readchar();
if (¢ch <0) return ch;
checksum = fromhexdigit ((char) ch);
ch = readchar();
if (¢h < 0) return ch;
checksum = (checksum < 4) + fromhexdigit((char) ch);

}

Any packet received gets confirmed with a + or, if corrupted, with a — sign.

(confirm receipt 102) =
if (checksum = my_checksum) writechar(’+?);
else writechar(’-");

flush();

Now we turn to writing a packet:

(functions 30) +=
int putpkt(char xbuffer)

unsigned char my_checksum = 0;
int receipt;
do {
writechar (°$°);
(write buffer 104 Ywritechar (?#?);
(write my_checksum 105) flush();
(get receipt 106)
} while (receipt = >-);
return 1;

}

A receipt character of — is a request for retransmission.

(100)

Used in 98.

(101)

Used in 98.

(102)

Used in 98.

(103)

22 5. Sending and Receiving Packets

(write buffer 104) = (104)
{
int 4
for (i = 0; buffer[i] #0; i++) {
writechar (buffer[i]);
my_checksum = my_checksum + buffer][i];

}

} Used in 103.

Writing the buffer could use run length encoding to save space. If a character is followed by *, the next
character minus 29 is taken as a repetition count, which is applied to the character preceding the x. We do
not use this feature here.

The checksum is written as two hex digits

(write my_checksum 105) = (105)
writechar (tohexdigit (my_checksum > 4));
writechar (tohexdigit (my_checksum & #0F)); Used in 103.
The receipt should be a + sign.
(get receipt 106) = (106)
receipt = readchar();
if (receipt < 0) return receipt; Used in 103.

5.1. Predefined Answers

Some answers are very common: an OK, an empty response to indicate that the command was not understood
or is not implemented, or an error response. We provide functions to write these responses into the output
buffer.

(function prototypes 7) += (107)
void answer_ok(char xbuffer); void answer_error (char xbuffer, int error) ;

void answer_nothing (char xbuffer);

Here are simple implementations:

(functions 30) += (108)
void answer_ok(char xbuffer)

{

buffer[0] = *0°;
buffer[1] = ’K’;
buffer[2] = 0;

}

void answer_error (char xbuffer, int error) { buffer[0] = *E’; buffer[1] = tohexdigit ((error > 4)
&*OF) ; buffer[2] = tohexdigit (error &*O0F) ;
buffer(3] = 0; } void answer_nothing(char xbuffer)

buffer[0] = 0;
}

5.2. Hexadecimal Numbers 23

5.2. Hexadecimal Numbers
We need functions to convert binary numbers to hexadecimal digits.
We start with two functions,

(function prototypes 7) += (109)
extern char tohexdigit(int n);
extern int fromhexdigit(char c);

that convert a number n in the range 0 to 15 into a hexadecimal digit and vice versa.

(functions 30) += (110)
char tohexdigit (int n)
{
n = n & #0F;
if (n < 10) return ’0’ + n;
else return A’ +n — 10;
}
int fromhezdigit(char c)
{
if (°0? <eAec<’9’) return c—’0’;
else if (’A? <cAc<’F’) return ¢— A’ + 10;
else if (’a’ <cAc<’f’) return ¢c—’a’ + 10;
else error ("Illegal hex digit") ;
return 0;

}

Occasionally, it is good to have a function to convert whole hexadecimal numbers to binary numbers and
back. The two functions hexfrombin and binfromhex will not alter the byte order and are useful if the hex
numbers refer to the target byte order. They both return the number of bytes written (either binary or hex).
The third and fourth function, intfromher and hexfromint, rely on the host byte order and use regular
unsigned int’s. The return value is the the unsigned integer value in the case of intfromhezr, and the
number of hex digits written in the case of hexfromint.
(functions 30) += (111)
int hexfrombin(char xto,char xfrom,int fromsize)
{
int 1 = 0;
char ch;
while (0 < fromsize—) {
ch = xfrom++;
toli++] = tohexdigit (((ch & #£0) > 4) & #01);
to[i++] = tohexdigit (ch & #0f);
}
to[i] = 0;
return ;

}

int binfromhex (char xto,int tosize,char xfrom)
{
int 1 = 0;
while (0 < tosize—) {
toli] = (fromhezdigit (xfrom++) < 4) & #£0;
toli] = toli] | (fromhexdigit (xfrom++) & #0£);
14+
}

return ;

24 5.2. Hexadecimal Numbers

}

unsigned int intfromhez (char *from)

{
unsigned int result = 0;
while (iszdigit (xfrom)) {
result = (result < 4) + fromhexdigit (from);
from ++;

}

return result;

¥
int hexfromint(char xto,unsigned int from)

{

int i = 0;
unsigned char ch;
do {

ch = from & #FF;
from = from > §;
toli++] = tohexdigit (((ch & #£0) > 4) & #01);
to[i++] = tohexdigit (ch & #0f);
} while (from > 0);
to[i] = 0;
return ¢;

6. Setting up a TCP/IP Connection

A TCP/IP connection is quite something complicated.
In the end, however, we have a socket

(global variables 13) += (112)
static int remote_socket;

that we can use to send and receive data using the send and recv system calls. We encapsulate the system
calls in two low level functions to read and write arbitrary data.

(functions 30) += (113)
static int sockread (int s, void xstr,size_t n)

int 4;

i = recv (s, str,n,0);

if (i > 0) return i;

else error ("socket_ read") ;
return 7;

}

static void sockwrite(int s, char xstr,size_t n)
{
int ¢;
while (n > 0) {
i = send (s, str,n,0);
if (i>0) {
str = str + 1;
n=n-—1

6. Setting up a TCP/IP Connection

}

else {
error ("socket write") ;
return;

}
}
}

25

Next, we have three higher level functions, that provide buffered single character input and output using the

lower level functions.

(function prototypes 7) +=
static int readchar(void);
static void writechar(char c);
static void flush(void);

(functions 30) +=
static int readchar(void)
{
static unsigned char buffer BUFSIZ];
static int index = 0;
static int size = 0;
if (index > size) {
size = sockread (remote_socket, buffer, sizeof (buffer));
if (size <0) return —1;
indexr = 0;
}
return buffer[index ++];

}

(global variables 13) +=
static unsigned char out_bujffer [BUFSIZ];
static int out_size = 0;

(functions 30) +=
static void writechar(char c)
{
if (oul_size > BUFSIZ) flush();
out_buffer|out_size++] = ¢;

}

(functions 30) +=
static void flush(void)
{
sockwrite (remote_socket , out_buffer, out_size);
out_size = 0;

}

(114)

(115)

(116)

(117)

(118)

All the rest of handling a TCP/IP connection under windows is contained in the following two functions:

(function prototypes 7) +=
extern void remote_open(char xname);
extern void remote_close(void);

(119)

Let us first investigate how to set up a TCP/IP connection under windows. The user interface of gdb
allows to specify the remote connection as “hostname:port” Actually, the hostname gets ignored, and we

just

26 6. Setting up a TCP/IP Connection

(extract the port number 120) = (120)

{

char xs;
s = strchr(name,’ 17);
if (s =NULL) fatal_error("IP port missing");
port = atoi(s + 1);
} Used in 132.
For functions like atoi, we need

(include files 26) += (121)
#include <stdlib.h>

Under the Windows Operating system, TCP/IP is handled by the so called WinSock DI, the windows
socket dynamic link library. This library needs to be loaded and initialized.

(initialize Windows TCP 122) = (122)
{
WSADATAwsaData;
if (WSAStartup(MAKEWORD(1, 1), &wsaData) # 0) fatal_error ("Unable toinitialize TCP/ip");
} Used in 132.

For the prototypes, we need

(include files 26) += (123)

#include <winsock.h>
The actual data is exchanged through a mechanism well known from the Unix operating system: sockets.
We first need a socket to be able to listen to the given port.

(obtain a socket 124) = (124)
{ int listen_socket;

listen_socket = socket (PF_INET,SOCK_STREAM, 0);

if (listen < 0) fatal_error("Can’t open socket"); Used in 132.
We change the settings for this socket to allow rapid reuse
(obtain a socket 124) += (125)
{
int tmp = 1;

setsockopt (listen_socket, SOL_SOCKET, SO_REUSEADDR, (char x) &tmp, sizeof (tmp));

}

We set up an information structure specifying the right port.
(obtain a socket 124) += (126)
{ struct sockaddr_in sin;
memset (&sin, 0, sizeof (sin));
sin.sin_family = PF_INET;
sin.sin_port = htons(port);
sin.sin_addr.s_addr = INADDR_ANY;
And bind the socket to the port.
(obtain a socket 124) += (127)
if (bind (listen_socket, (struct sockaddr x) &sin,sizeof (sin)) V listen (listen_socket, 1))
fatal_error("can_ not bind address");
Using this socket we now listen at out port and wait for a connection.
(obtain a socket 124) += (128)

{

int tmp;

6. Setting up a TCP/IP Connection 27

tmp = sizeof (sin);
remote_socket = accept (listen_socket, (struct sockaddr *) &sin, &tmp);
if (remote_socket < 0) fatal_error("accept");
}
Once this call returns successfully set options on the new socket to enable TCP to keep alive process and to
tell TCP not to delay small packets (This can speed up interactive connections dramatically).

(obtain a socket 124) += (129)

{

int tmp;

tmp = 1;

setsockopt (remote_socket , SOL_SOCKET, SO_KEEPALIVE, (char *) &tmp, sizeof (tmp));

tmp = 1;

setsockopt (remote_socket , IPPROTO_TCP, TCP_NODELAY, (char *) &tmp, sizeof (tmp));
¥

After that, we do not need any more the listen_socket and all the data structures associated with it.

(obtain a socket 124) += (130)
closesocket (listen_socket); /* No longer need this */

3

We announce success and are done for mow.

(obtain a socket 124) += (131)
message ("Connected, to gdb,,...\n");

This sequence of actions is packed into a nice function:
(functions 30) += (132)
void remote_open(char xname)

{

unsigned short int port;

(extract the port number 120)(initialize Windows TCP 122)(obtain a socket 124)
}

This function is used to

(open a connection to gdb 133) = (133)
remote_open (argu[1]); Used in 4.
Once the TCP/IP connection is no longer needed, we close the socket and tell the Winsock DII to clean

up.

(functions 30) += (134)
void remote_close(void)

{

closesocket (remote_socket);
WSACleanup();

‘We use this to

(close the connection to gdb 135) = (135)
remote_close();
message("Remoteuhostuterminateduconnection. "); Used in 5.

28 7. Error Reporting and Messages
7. Error Reporting and Messages

Here we define three functions:
(target imports 60) += (136)
extern void message(char xmsg); extern void
error (char *msg) ;
extern void fatal_error(char xmsg);
We have three stages: normal messages are just printed to stderr

(functions 30) += (137)
void message (char xmsg)

fouts(msg, stderr);

}

For stderr, we need

(include files 26) += (138)
#include <stdio.h>

On the next level, we have errors, they are printed and tagged with the Word Error.

(functions 30) += (139)
void error (char xmsg)
{
message ("Error:,");
message(msg);
message ("\n");
longgmp (toplevel , 1);

}

Further, we use a longjmp to return to a predefined location stored in a

(global variables 13) += (140)
static jmp_buf toplevel;

We need

(include files 26) += (141)

#include <setjmp.h>

It gets initialized two ways, we

(set an error reentry point 142) = (142)
if (setymp (toplevel)) putpkt(""); Used in 4.

and we

(set an error exit point 143) = (143)
if (setjmp (toplevel)) fatal_error("Unable to continue"); Used in 4.

At the last level, there are fatal errors. The program will not continue past a call to this function.
(functions 30) += (144)

void fatal_error(char xmsg)
{

message ("Fatal Error:,");

message (msg);

message ("\n");

exit (1);

8. Index
- 21
79
accept 26

answers 2, 22

base pointer 19

big endian 3

binary numbers 23

bind 26

breakpoint 16

buffered input/output 25
byte order 3

c 3,7

checksum 20, 22

close handle 15
CloseHandle 15
closesocket 27

code segment 16
colon 8

commandline 15
commands 2

confirm packet 21
connection 24, 26
CONTEXT 16
continuation point 20
continue 19

continue command 8
continue execution 7, 8
ContinueDebugEvent 11, 19
corrupted packet 21
create process 14
create process event 11
create thread event 12
CreateProcess 14
current thread 8

D 9

detach 9
dwDebugEventCode 11
dwThreadld 11

Ebp 19
Eflags 20
Eip 19

empty response 22
enable extended mode 9
equal sign 5

error 28

error response 22

Esp 19
event 10
event structure 11

exception event 12

execution state 3
exit code 7

exit process event
exit thread event
expedite registers
extended mode 9

fatal error 28

11
11
19

FlushInstructionCache 16

G 3,4

g 3

gdb 2

gdbserver 2
GetThreadContext

handle 14
header file 10
hexadecimal 3, 20

16

hexadecimal numbers 23

hostname 25
htons 26

ignore event 11

implementation 10

instruction cache 16

instruction pointer
Intel 10, 19
k 9

kill process 9
kill target 15

last signal 9
little endian 3
load dll event 11

longjmp 28
M 3,6
m 3,5

main PBmain?2
memory 3
message 3, 28
message buffer 3

OK 22
optional commands

other commands 9

19, 20

3

30

output debug event 11

P 5

p 5

packet 3
packet write 21
port 25
process 3

query last signal 9

read error 21

read memory 5, 15
read register 5

read registers 3, 15, 16
ReadProcessMemory 15
receive packet 20

recv 24

register 3

register access 17
register mapping 17
register number 8
register value 8
remote protocol 3
reporting 7

resume mode 19
retransmission 21

run length encoding 22

s 3, 8

semicolon 8

send 24

send packet 20
sequence id 20
setsockopt 26
SetThreadContext 17
signal 7, 12

signal number 7
single step execution 8§
socket 24, 26

stack pointer 19
start target 14
status 12

stderr 28

stepping 20
stopped thread 7

T 7

target 4

target architecture 10
target byte order 23
target memory 5
target register number

18

target resume 19
target signal 12
target stop 7

target.c 10
target.h 10
TCP/IP 24

terminate target 15
TerminateProcess 15
thread 3

thread resume 19

timeout 10

Unix 13, 26
unload dll event 11

Version 5.0 20

W 7

wait 10

wait for an event 10
WaitForDebugEvent 10
Win32 10

win32 13

win32 API 10
Windows 2

windows 10, 26
WinSock 26

winsock.h 26

write memory 6, 15, 16
write register 5

write registers 15, 16
WriteProcessMemory 16
WSAStartup 26

8. Index

9. Crossreference of Identifiers 31

9. Crossreference of Identifiers dwProcessld: 47, 48, 66.
a: 23,27, 28, 35, 71, 72, 73, 74, 96, 97. dwThreadld: 45, 46, 47, 48, 66.
accept: 128. Eag: 84.
answer_error: 19, 27, 107, 108. Ebpf 84
answer_nothing: 38, 39, 40, 107, 108. Ebz: 84,
answer_ok: 16, 18, 27, 107, 108. Ec:?: 84.
answer_registers: 30, 31, 33. Edi: 84.
answer_stopped: 28, 30, 35, 36. Edz: 84.
arge: 3, 64, 65, 66. EFlags: 84, 94.
argu: 3, 64, 65, 66, 68, 133, Eftags: 94.
atoi: 120, 121. Lip: 84, 97.
bind: 127 ErrorOffset: 84.
binfromhex: 17,20, 27, 111. ErforSelector: 84.
BOOL: 66. Bsi: 84.
buffer: 7, 8,9, 10, 12, 15, 16, 17, 18, 19, 20, 22, Bsp: 84
247 25’ 277 28, 297 m’ ﬂ, Ev 35, 36, 38, 397 40’ event: . 45, 46, 47, 48, 49, 51, 52, 62.
%’ 100, m7 1047 M» &7 & E:z:ceptwn: 62.
buffer_size: 9, 15, 24. exception: 56.
BUFSIZ: 115,116, 117. EXCEPTION_ACCESS_VIOLATION: 62.
e 109, 110, 114, 117. EXCEPTION_ARRAY_BOUNDS_EXCEEDED: 62.
cb: 66. EXCEPTION_BREAKPOINT: 62.
ch: 99,100, 101, 111. EXCEPTION_DEBUG_EVENT: 56, 61, 94.
checksum: 98, 101, 102. EXCEPTION_ILLEGAL_INSTRUCTION: 62.
CloseHandle: 51. 70. EXCEPTION_NONCONTINUABLE_EXCEPTION: 62.
closesocket: 130”134_ EXCEPTION_PRIV_INSTRUCTION: 62.
commandline: 66, 68. EXCEPTION_SINGLE_STEP: 62.
CONTEXT: 75, 78, 82, 83, 87. ExceptionCode: 62.
context: 75,78, 80, 86, 94, 95, 97. EzceptionRecord: 2.
context_changed: 78,79, 80, 87, 91, 95, 97. exit: 37, 144.
CONTEXT_FULL: 78, 80. EXIT_PROCESS_DEBUG_EVENT: 52.
context_mapping: 82, 83, 84, 85, 86, 83 EXIT_THREAD_DEBUG_EVENT: 52.
context_valid: 76, 77, 78, 80, 91. EXITED: 30, 32, 52, 55.
ContextFlags: 78, 80. ExitProcess: 52.
ContinueDebugBEvent: 48, 91. EzitThread: 52.
ControlWord: 84. expedite: 89.
count: T2, 74. EzxtendedRegisters: 84.
CREATE_PROCESS_DEBUG_EVENT: 51. fatal_error: 15, 64, 120, 122, 124, 127, 128, 136,
CREATE_THREAD_DEBUG_EVENT: 59. 143, 144.
CreateProcess: 66. field: 83.
CreateProcessInfo: 51. flags: 66.
DataOffset: 84. FloatSave: 84.
DataSelector: 84. flush: 102, 103, 114, 117, 118.
DBG_CONTINUE: 48, 92. FlushInstructionCache: T4.
DBG_CONTROL_BREAK: 62. forintf: 45,47, 48, 91.
DBG_CONTROL_C: 62. fputs: 13T7.
DBG_EXCEPTION_NOT_HANDLED: 94. free: 23, 27.
DEBUG_EVENT: 45. from: 31, 34, 111.
DEBUG_ONLY_THIS_PROCESS: 66. fromhezdigit: 101, 109, 110, 111.
DEBUG_PROCESS: 66, 67. fromsize: 34, 111.
dwDebugFEventCode: 45, 49. getpkt: 7,8, 98.
dwEzitCode: 52. GetThreadContext: 75, 78.

DWORD: 46, 66, 67, 72, 74, 93. HANDLE: 67.

32 9. Crossreference of Identifiers

hexfrombin: 12, 22, 25, 33, 34, 111. ReadProcessMemory: 72.
hezfromint: 30, 31, 33, 111. receipt: 103, 106.
hFile: 51. recv: 113.
hProcess: 51, 66. REGISTER_NAME: 12.
hThread: 51, 66. REGISTER_RAW_SIZE: 12.
htons: 126. RegisterArea: 84.
i 17, 68, 81, 86, 87, 88, 104, 111, 113. registerpkg_size: 13, 14, 15, 17.
id: 46, 67. remote_close: 119, 134, 135.
INADDR_ANY: 126. remote_open: 119, 132, 133.
indexr: 115. remote_socket: 112, 115, 118, 128, 129, 134.
INFINITE: 45. result: 111.
intfromhex: 19, 24, 29, 111. resume_mode: 91, 92, 93.
IPPROTO_TCP: 129. ret: 66.
wsxdigit: 111, RUNNING: 55.
j: G68. s 113, 120.
k: 68. s_addr: 126.
KILLED: 30, 32, 55. SegCs: 84.
. 23,27, 30, 33, 71, 72, 73, 74. SegDs: 84.
length: 98, 100. SegEs: 84.
listen: 124, 127. SegFs: 84.
listen_socket: 124, 125, 127, 128, 130. SegGs: 84.
LOAD_DLL_DEBUG_EVENT: 51. SegSs: 84.
LoadDIl: 51. send: 113.
longjmp: 139, 140. setyjmp: 142, 143.
LPCVOID: 72, 74. setsockopt: 125, 129.
LPVOID: 74. SetThreadContext: 80.
m: 23,27, 71, 72, 73, 74. si: 66.
main: 3, 6. sig: 30.
MAKEWORD: 122. signal: 52, 54, 56, 57, 58, 59, 62.
malloc: 15, 23, 27. sin: 126, 127, 128.
map: 83, 84. sin_addr: 126.
mapping: 82, 84, 85. sin_family: 126.
memset: 66, 78, 126. sin_port: 126.
message: 17, 19, 32, 72, 74, 131, 135, 136, 137, size: 82, 88, 115.
139, 144. SO_KEEPALIVE: 129.
msg: 136, 137, 139, 144. SO_REUSEADDR: 125.
my_checksum: 98, 100, 102, 103, 104, 105. SOCK_STREAM: 124.
n: 12, 14, 18, 21, 33, 109, 110, 113. sockaddr: 127, 128.
name: 119, 120, 132. sockaddr_in: 126.
offset: 82, 86. socket: 124.
out_buffer: 116, 117, 118. sockread: 113, 115.
out_size: 116, 117, 118. sockwrite: 113, 118.
QUTPUT_DEBUG_STRING_EVENT: 50. SOL_SOCKET: 125, 129.
p: 12,17, 87. STARTUPINFO: G6.
PF_INET: 124, 126. status: 30, 32, 52, 54, 55, 57, 58, 59, 61.
pi: 66. STATUS_FLOAT_DENORMAL_OPERAND: 62.
port: 120, 126, 132. STATUS_FLOAT_DIVIDE_BY_ZERO: 62.
process_handle: 66, 67, 70, 72, 74. STATUS_FLOAT_INEXACT_RESULT: 62.
process_id: 47, 66, 67, 91. STATUS_FLOAT_INVALID_OPERATION: 62.
PROCESS_INFORMATION: 66. STATUS_FLOAT_OVERFLOW: 62.
putpkt: 7,8, 103, 142. STATUS_FLOAT_STACK_CHECK: 62.

readchar: 99, 100, 101, 106, 114, 115. STATUS_FLOAT_UNDERFLOW: 62.

9. Crossreference of Identifiers

STATUS_INTEGER_DIVIDE_BY_ZERO: 62. WSADATA: 122.
STATUS_INTEGER_OVERFLOW: 62. wsaData: 122.
STATUS_STACK_OVERFLOW: 62. WSAStartup: 122.

StatusWord: 84.
stderr: 45,47, 48, 91, 137, 138.
STOPPED: 55, 59, 61.

str: 113.

strehr: 20, 24, 26, 27, 120.
strepy: 68.

strlen: 17, 68.

t: 56.

TagWord: 84.

target_continue: 28, 90, 91, 95.

target_expedite: 33, 81, 89.

target_get_memory: 23, 71, 72.

target_kill: 37, 69, 70.

target_put_memory: 27,73, 74.

target_register_address: 17, 18, 20, 81, 87.

target_register_size: 12, 13, 14, 17, 20, 22, 33, 81,
88.

target_register_value: 12,13, 18, 22, 33, 75, 81, 86,
87.

target_registers: 12, 13, 14, 17, 19, 81, 85.

target_set_ip: 96, 97.

target_signal: 30, 57, 58.

TARGET_SIGNAL_FPE: 62.

TARGET_SIGNAL_TILL: 62.

TARGET_SIGNAL_INT: 62.

TARGET_SIGNAL_SEGV: 62.

TARGET_SIGNAL_TRAP: 59, 60, 62.

TARGET_SIGNAL_UNKNOWN: 62.

target_start: 64, 65, 66.

target_status: 30, 32, 57, 58.

target_step: 35, 90, 94, 95.

target_wait: 8, 28, 35, 44, 45, 48.

TCP_NODELAY: 129.

TerminateProcess: 70.

thread_handle: 66, 67, 70, 78, 80.

thread_id: 46, 47, 66, 67, 91.

thread_info: 53, 56.

tmp: 125, 128, 129.

to: 31,34, 111.

tohexdigit: 105, 108, 109, 110, 111.

toplevel: 139, 140, 142, 143.

tosize: 111.

TRUE: 66.

UNLOAD_DLL_DEBUG_EVENT: 50.

validate_cache: 78, 86, 95, 97.

WaitForDebugEvent: 45.

writechar: 102, 103, 104, 105, 114, 117.

WriteProcessMemory: T4.

WSACleanup: 134.

33

34 Crossreference of Code

10. Crossreference of Code

(answer memory string 25) Used in section 23.

(answer register n 22) Used in section 21.

(answer registers 12) Used in section 11.

(check for end of target process 32) Used in section 8.
(close the connection to gdb 135) Used in section 5.
(confirm receipt 102) Used in section 98.

(convert win32 signal to gdb signal 62) Used in section 61.
(convert argv to commandline 68) Used in section 66.
(define local variables 9) Used in section 4.

<diSpatCh a message 10, 11, 16, 18, 21, 23, 27, 28, 35, 36, 37, 38, 39, 40> Cited in section 41. Used in section 8.
(extract the port number 120) Used in section 132.
(function prototypes 7, 31, 34, 107, 109, 114, 119) Used in section 1.
(functions 30, 33, 98, 103, 108, 110, 111, 113, 115, 117, 118, 132, 134, 137, 139, 144) Used in section 2.
(get address a and length [24) Used in sections 23 and 27.
(get checksum 101) Used in section 98.

(get optional address a 29) Used in sections 28 and 35.
(get packet 100) Used in section 98.

(get receipt 106) Used in section 103.

(global variables 13, 112, 116, 140) Used in section 1.
<ign0re the event 48> Cited in section 47. Used in sections 47, 50, 51, and 63.
(include files 26, 42, 121, 123, 138, 141) Used in section 1.
(initialize Windows TCP 122) Used in section 132.
(initialize variables 14, 15) Used in section 4.

(invalidate the cache 77) Used in sections 52, 59, 61, and 66.
(obtain a socket 124, 125, 126, 127, 128, 129, 130, 131) Used in section 132.

(obtain one register value 20) Used in section 18.

(obtain register number n 19) Used in sections 18 and 21.

(obtain registers 17) Used in section 16.

(open a connection to gdb 133) Used in section 4.

(private target types 53, 82, 83) Used in section 43.

(private target variables 56, 84) Used in section 43.

(process the event 47, 49, 50, 51, 52, 59, 61, 63) Cited in section 45. Used in section 45.

(receive and dispatch messages 8) Cited in section 7. Used in section 4.

(set a valid cache 80) Used in section 91.

(set an error exit point 143> Used in section 4.

(set an error reentry point 142) Used in section 4.

(set stepping flag 94) Used in section 95.

<Set resume_mode 92> Used in sections 52, 59, and 61.

(skip to the dollar sign 99) Used in section 98.

(start the target program 64) Used in section 4.

<target exports 44, 55, 57, 65, 69, 71, 73, 81, 90, 96> Cited in section 41. Used in section 41.

<target functions 45, 58, 66, 70, 72, 74, 78, 85, 86, 87, 88, 89, 91, 95, 97> Cited in section 43. Used in section 43.
(target imports 60, 136) Cited in section 41. Used in section 41.

(target.c 43)

(target.h 41)

(thread information 46, 54, 67, 75, 76, 79, 93) Used in section 53.

(write buffer 104) Used in section 103.

(write my_checksum 105) Used in section 103.

	1. Table of Contents
	2. Introduction
	3. The {�am 	tfam 	entt gdb} Remote Protocol
	3.1. Read Registers
	3.2. Write Registers
	3.3. Write Single Register
	3.4. Read Single Register
	3.5. Read Memory
	3.6. Write Memory
	3.7. Continue Execution
	3.8. Single Step Execution
	3.9. Query Last Signal
	3.10. Kill Process
	3.11. Enable extended Mode
	3.12. Detach from Remote System
	3.13. Other Commands
	4. The Win32 Target Architecture
	4.1. Waiting for an Event
	4.2. Starting the Target Thread
	4.3. Terminating the Target Thread
	4.4. Reading Target Memory
	4.5. Writing Target Memory
	4.6. Reading and Writing Target Registers
	4.7. Register access functions
	4.8. Resuming a Thread
	5. Sending and Receiving Packets
	5.1. Predefined Answers
	5.2. Hexadecimal Numbers
	6. Setting up a TCP/IP Connection
	7. Error Reporting and Messages
	8. Index
	9. Crossreference of Identifiers
	10. Crossreference of Code

