Farey series

\[
\begin{align*}
t & \quad \text{IS} \quad \$255 \\
\text{LOC} & \quad \text{Data_Segment} \\
_x & \quad \text{GREG} \quad @ \\
\text{LOC} & \quad \text{Data_Segment+4*10000} \\
y & \quad \text{GREG} \quad @ \\
\text{LOC} & \quad \#100 \\
\end{align*}
\]

> Computation of Farey series

> Calling sequence: SET $1,n; \text{PUSHJ }$0,:Farey

> Entry conditions: \(n \) in 1 is the order of the series, \(1 < n < 182 \)

> \(_x \) and \(_y \) are arrays, each for at least 10000 tetras

> Exit conditions: 0 is number of \(x/y \) pairs, i.e., entries generated in \(_x \) and \(_y \)

PREFIX :FAREY:

01 \(n \) IS 1

Parameter: order of the Farey series

02 \(kk \) IS 2

\(kk \leftarrow 4 \times k \)

03 \(yk \) IS 3

\(yk \)

04 \(yk1 \) IS 4

\(yk+1 \)

05 \(xk \) IS 5

\(x_k \)

06 \(xk1 \) IS 6

\(x_{k+1} \)

07 \(flr \) IS 7

08 \(yk2 \) IS 8

\(y_{k+2} \)

09 \(xk2 \) IS 9

\(x_{k+2} \)

10 :Farey SET \(n,\$0 \)

1 Get the parameter.

11 SET \(xk,0 \)

1 Init for \(k = 0 \).

12 STTU \(xk,:_x,4\times0 \)

1

13 SET \(yk,1 \)

1

14 STTU \(yk,:_y,4\times0 \)

1

15 SET \(xk1,1 \)

1 Init for \(k = 1 \).

16 STTU \(xk1,:_x,4\times1 \)

1

17 SET \(yk1,n \)

1

18 STTU \(yk1,:_y,4\times1 \)

1

19 SET \(kk,4 \)

1 \(k \leftarrow 1 \).

20 nextval ADDU \(flr,yk,n \)

A Calculate the next values \(xk2 \) and \(yk2 \).

21 DIVU \(flr,flr,yk1 \)

A \(flr \leftarrow \left\lfloor \frac{(yk+n)}{yk1} \right\rfloor \).

22 MULU \(xk2,flr,xk1 \)

A

23 SUBU \(xk2,xk2,xk \)

A \(xk2 \leftarrow flr \times xk1 - xk \).

24 MULU \(yk2,flr,yk1 \)

A

25 SUBU \(yk2,yk2,yk \)

A \(yk2 \leftarrow flr \times yk1 - yk \).

26 INCL \(kk,4 \)

A \(k \leftarrow k + 1 \).

27 STTU \(xk2,:_x,kk \)

A

28 STTU \(yk2,:_y,kk \)

A

29 SET \(xk,xk1 \)

A Shuffle the registers.

30 SET \(xk1,xk2 \)

A

31 SET \(yk,yk1 \)

A

32 SET \(yk1,yk2 \)

A

33 CMPU \(flr,xk2,yk2 \)

A The computation stops when

34 PBNZ \(flr,nextval \)

A \(1 = 1/1 \) is computed.

35 INCL \(kk,4 \)

1

36 SR \(kk,kk,2 \)

1 Remove factor for tetra.

37 SET \(\$0,kk \)

1 The number of elements

38 POP \(1,0 \)

1 is returned.
Analysis

The subroutine :Farey costs \((2A + 4)\mu + (92A + 18)\nu\).

Let the length of a Farey series of order \(n\) be \(f_n\). Then the following relation holds: \(A = f_n - 2\). The value of \(f_1\) is 2 as there are just the two entries 0/1 and 1/1. The Farey series of order 2 has one more element as the only quotient to be added is 1/2. So \(f_2 = 3\). In general the step from \(f_{n-1}\) to \(f_n\) adds all quotients of the form \(x/n\) in which the \(x\) is relatively prim to \(n\). So \(f_n = f_{n-1} + \varphi(n)\). Therefore \(A = 2 + \varphi(2) + \varphi(3) + \cdots + \varphi(n) - 2\).

For test runs with \(n = 7, 13,\) and 39 the answers are \(f_7 = 19, f_{13} = 59,\) and \(f_{39} = 475\). So in the subroutine the value of \(A\) has to be \(17 + 57 + 473 = 547\).

The first call to Farey starts with 7 instructions, 1 mem, 11 oops; 0 good guesses, 0 bad and ends with 276 instructions, 39 mems, 1593 oops; 16 good guesses, 1 bad. Therefore the subroutine needs \(38\mu\) and \(1582\nu\). The second and third calls have \(118\mu + 5262\nu\) and \(950\mu + 43534\nu\). The measured data agree with the above stated cost function.