
The CTIE Processor

Julian Gilbey
jdg@debian.org

Based on the original TIE documentation by:
Klaus Guntermann

TH Darmstadt
Fachbereich Informatik

Institut für Theoretische Informatik

January 2002, updated April 2003

1 Introduction

When installing a program on a particular computer system, certain system
dependent changes are often needed. The original WEB programs (WEAVE and
TANGLE) handled this problem by using change files, which work very much
like a patch file and are read by WEAVE and TANGLE along with the main WEB
file. This allows the original WEB file to remain intact and the particular system
dependencies to be isolated.

Sometimes it is good practice to develop a set of multiple change files for
a given WEB file to distinguish between different changes such as program en-
hancements, bug fixes, system dependent changes and output device dependent
modifications. Additionally this allows combinations of changes that can be
used with a set of programs that share some common features, such as WEAVE
and TANGLE themselves.

Unfortunately, the processors TANGLE and WEAVE can handle only one change
file. Rather than modifying these processors to handle multiple change files, it is
easier to combine them in a preprocessing step. The TIE processor was written
to perform this task. It is able to create either a new master file or a single
change file that comprises the effect of all change files.

The CWEB system was later developed in order to open up the WEB system of
literate programming to C programmers. It functions in an essentially identical
way to the original Pascal WEB system, and the syntax of change files is the same.
So it should be possible to use the TIE processor for CWEB source files. However,
one significant enhancement was made to CWEB which makes this sometimes
impossible. CWEB supports include files, which are introduced by a line beginning
‘@i filename’, which includes the CWEB file specified, just like the C preprocessor
command #include. As these include commands are effectively expanded before
the change file is applied, both in the master file and the change file, it is clear
that TIE needs to interpret @i commands in order to work for all CWEB files.
Thus CTIE was born: it essentially combines the traditional behaviour of TIE
with the ability to handle CWEB include files.

1



2 Application

The current version of CTIE accepts a master file and up to 32 change files. In
general it is important to use the change files in the correct sequence, as later
change files may modify the results of applying earlier changes. Thus the order
of the change files on the command line is taken to specify the order in which
the change files should be applied. Conceptually, each change file is applied to
the master file in turn to create a new master file, to which the next change file
is applied; in practice, though, a more space-efficient algorithm is used which
only requires storage space for one line per file, so the lengths of the individual
files or changes are irrelevant for storage requirements.

Note that CTIE will expand all @i include lines, including the specified files
whether or not they are modified by any change files. So another application
of CTIE is to simply expand all of these include files, producing an expanded
master file. (Thanks to Hartmut Henkel <hartmut henkel@gmx.de> for this
observation.)

CTIE must be called with at least 3 parameters as follows:

ctie -[cm] outfile master changefile(s)

where the parameters are (in order):

1. Either the option -c or -m. This option determines whether an amalga-
mated change file or a new master file is created.

2. The name of the output file.

3. The name of the master file.

4. The name(s) of the change file(s), if any.

Unlike the CWEB programs CWEAVE and CTANGLE, no attempt to add default
suffixes such as .w or .ch is made; the filenames must be the full filenames. If
CTIE has been compiled with kpathsea support, then the kpathsea library will
be used to search for the files using the CWEBINPUTS variable, otherwise just the
current directory and the directory specified by the CWEBINPUTS environment
variable will be searched, in that order.

Also, CTIE can be called with the single argument --help or --version to
get basic help or version information.

2



3 Example

To illustrate the actions CTIE performs you may inspect the following example
that exercises some of the borderline cases.

ctie.tie ctie.cf1 ctie.cf2 ctie.cf3
line 1 @x @x @x
line 2 line 2 line 1 changed line 4
line 3 line 3 changed line 2 @y
line 4 @y changed line 3 final line 4
line 5 changed line 2 inserted line @z
@i ctie.inc changed line 3 line 4
line 6 inserted line @y @x
line 7 @z final line 2 changed inc line 1
line 8 final line 3 inserted inc line
line 9 @x changed line 4 @y
line 10 line 7 @z final inc line 1
〈EOF〉 @y @i "ctie.inc2"

changed line 7 @x @z
@z inc line 1 〈EOF〉
〈EOF〉 @y

changed inc line 1
inserted inc line
@z

@x
changed line 7
line 8
@y
final line 7
final line 8
@z
〈EOF〉

The included files are as follows:

ctie.inc ctie.inc1 ctie.inc2
inc line 1 included inc line final inserted inc line
inc line 2 〈EOF〉 〈EOF〉
@i ctie.inc1
inc line 3
〈EOF〉

3



Using these input files and running CTIE with the following commands to create
a new master file and a new change file will result in the following output files.

For the master file: ctie -m ctie.outm ctie.cf1 ctie.cf2 ctie.cf3
For the change file: ctie -c ctie.outc ctie.cf1 ctie.cf2 ctie.cf3

ctie.outm ctie.outc
final line 2 @x
final line 3 line 1
final line 4 line 2
line 5 line 3
final inc line 1 line 4
final inserted inc line @y
inc line 2 final line 2
included inc line final line 3
inc line 3 final line 4
line 6 @z
final line 7
final line 8 @x
line 9 inc line 1
line 10 @y

final inc line 1
final inserted inc line
@z

@x
line 7
line 8
@y
final line 7
final line 8
@z

4


